cluster cells using hierarchical clustering algorithm
doHclust( gobject, expression_values = c("normalized", "scaled", "custom"), genes_to_use = NULL, dim_reduction_to_use = c("cells", "pca", "umap", "tsne"), dim_reduction_name = "pca", dimensions_to_use = 1:10, distance_method = c("pearson", "spearman", "original", "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"), agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average", "mcquitty", "median", "centroid"), k = 10, h = NULL, name = "hclust", return_gobject = TRUE, set_seed = T, seed_number = 1234 )
gobject | giotto object |
---|---|
expression_values | expression values to use |
genes_to_use | subset of genes to use |
dim_reduction_to_use | dimension reduction to use |
dim_reduction_name | dimensions reduction name |
dimensions_to_use | dimensions to use |
distance_method | distance method |
agglomeration_method | agglomeration method for hclust |
k | number of final clusters |
h | cut hierarchical tree at height = h |
name | name for hierarchical clustering |
return_gobject | boolean: return giotto object (default = TRUE) |
set_seed | set seed |
seed_number | number for seed |
giotto object with new clusters appended to cell metadata
Description on how to use Kmeans clustering method.
data(mini_giotto_single_cell) mini_giotto_single_cell = doHclust(mini_giotto_single_cell, k = 4, name = 'hier_clus') plotUMAP_2D(mini_giotto_single_cell, cell_color = 'hier_clus', point_size = 3)