run UMAP
runUMAP( gobject, expression_values = c("normalized", "scaled", "custom"), reduction = c("cells", "genes"), dim_reduction_to_use = "pca", dim_reduction_name = "pca", dimensions_to_use = 1:10, name = "umap", genes_to_use = NULL, return_gobject = TRUE, n_neighbors = 40, n_components = 2, n_epochs = 400, min_dist = 0.01, n_threads = NA, spread = 5, set_seed = TRUE, seed_number = 1234, verbose = T, ... )
| gobject | giotto object |
|---|---|
| expression_values | expression values to use |
| reduction | cells or genes |
| dim_reduction_to_use | use another dimension reduction set as input |
| dim_reduction_name | name of dimension reduction set to use |
| dimensions_to_use | number of dimensions to use as input |
| name | arbitrary name for UMAP run |
| genes_to_use | if dim_reduction_to_use = NULL, which genes to use |
| return_gobject | boolean: return giotto object (default = TRUE) |
| n_neighbors | UMAP param: number of neighbors |
| n_components | UMAP param: number of components |
| n_epochs | UMAP param: number of epochs |
| min_dist | UMAP param: minimum distance |
| n_threads | UMAP param: threads/cores to use |
| spread | UMAP param: spread |
| set_seed | use of seed |
| seed_number | seed number to use |
| verbose | verbosity of function |
| ... | additional UMAP parameters |
giotto object with updated UMAP dimension recuction
See umap for more information about these and other parameters.
Input for UMAP dimension reduction can be another dimension reduction (default = 'pca')
To use gene expression as input set dim_reduction_to_use = NULL
If dim_reduction_to_use = NULL, genes_to_use can be used to select a column name of
highly variable genes (see calculateHVG) or simply provide a vector of genes
multiple UMAP results can be stored by changing the name of the analysis
data(mini_giotto_single_cell) mini_giotto_single_cell <- runUMAP(mini_giotto_single_cell, dimensions_to_use = 1:3, n_threads = 1, n_neighbors = 3)#> #> umap has already been used, will be overwritten