run tSNE
runtSNE( gobject, expression_values = c("normalized", "scaled", "custom"), reduction = c("cells", "genes"), dim_reduction_to_use = "pca", dim_reduction_name = "pca", dimensions_to_use = 1:10, name = "tsne", genes_to_use = NULL, return_gobject = TRUE, dims = 2, perplexity = 30, theta = 0.5, do_PCA_first = F, set_seed = T, seed_number = 1234, verbose = TRUE, ... )
gobject | giotto object |
---|---|
expression_values | expression values to use |
reduction | cells or genes |
dim_reduction_to_use | use another dimension reduction set as input |
dim_reduction_name | name of dimension reduction set to use |
dimensions_to_use | number of dimensions to use as input |
name | arbitrary name for tSNE run |
genes_to_use | if dim_reduction_to_use = NULL, which genes to use |
return_gobject | boolean: return giotto object (default = TRUE) |
dims | tSNE param: number of dimensions to return |
perplexity | tSNE param: perplexity |
theta | tSNE param: theta |
do_PCA_first | tSNE param: do PCA before tSNE (default = FALSE) |
set_seed | use of seed |
seed_number | seed number to use |
verbose | verbosity of the function |
... | additional tSNE parameters |
giotto object with updated tSNE dimension recuction
See Rtsne
for more information about these and other parameters.
Input for tSNE dimension reduction can be another dimension reduction (default = 'pca')
To use gene expression as input set dim_reduction_to_use = NULL
If dim_reduction_to_use = NULL, genes_to_use can be used to select a column name of
highly variable genes (see calculateHVG
) or simply provide a vector of genes
multiple tSNE results can be stored by changing the name of the analysis
data(mini_giotto_single_cell) mini_giotto_single_cell <- runtSNE(mini_giotto_single_cell, dimensions_to_use = 1:3, n_threads = 1, n_neighbors = 3, perplexity = 1)#> #> tsne has already been used, will be overwritten