Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode
spatDimGenePlot2D( gobject, show_image = F, gimage = NULL, image_name = "image", expression_values = c("normalized", "scaled", "custom"), plot_alignment = c("vertical", "horizontal"), genes, dim_reduction_to_use = "umap", dim_reduction_name = "umap", dim1_to_use = 1, dim2_to_use = 2, dim_point_shape = c("border", "no_border"), dim_point_size = 1, dim_point_alpha = 1, dim_point_border_col = "black", dim_point_border_stroke = 0.1, show_NN_network = F, show_spatial_network = F, dim_network_color = "gray", nn_network_to_use = "sNN", network_name = "sNN.pca", dim_edge_alpha = NULL, scale_alpha_with_expression = FALSE, sdimx = "sdimx", sdimy = "sdimy", spatial_network_name = "Delaunay_network", spatial_network_color = NULL, show_spatial_grid = F, grid_color = NULL, spatial_grid_name = "spatial_grid", spat_point_shape = c("border", "no_border", "voronoi"), spat_point_size = 1, spat_point_alpha = 1, spat_point_border_col = "black", spat_point_border_stroke = 0.1, spat_edge_alpha = NULL, cell_color_gradient = c("blue", "white", "red"), gradient_midpoint = NULL, gradient_limits = NULL, cow_n_col = 2, cow_rel_h = 1, cow_rel_w = 1, cow_align = "h", show_legend = T, legend_text = 8, dim_background_color = "white", spat_background_color = "white", vor_border_color = "white", vor_max_radius = 200, vor_alpha = 1, axis_text = 8, axis_title = 8, show_plot = NA, return_plot = NA, save_plot = NA, save_param = list(), default_save_name = "spatDimGenePlot2D" )
gobject | giotto object |
---|---|
show_image | show a tissue background image |
gimage | a giotto image |
image_name | name of a giotto image |
expression_values | gene expression values to use |
plot_alignment | direction to align plot |
genes | genes to show |
dim_reduction_to_use | dimension reduction to use |
dim_reduction_name | dimension reduction name |
dim1_to_use | dimension to use on x-axis |
dim2_to_use | dimension to use on y-axis |
dim_point_shape | dim reduction points with border or not (border or no_border) |
dim_point_size | dim reduction plot: point size |
dim_point_alpha | transparancy of dim. reduction points |
dim_point_border_col | color of border around points |
dim_point_border_stroke | stroke size of border around points |
show_NN_network | show underlying NN network |
show_spatial_network | show underlying spatial netwok |
dim_network_color | color of NN network |
nn_network_to_use | type of NN network to use (kNN vs sNN) |
network_name | name of NN network to use, if show_NN_network = TRUE |
dim_edge_alpha | dim reduction plot: column to use for alpha of the edges |
scale_alpha_with_expression | scale expression with ggplot alpha parameter |
sdimx | spatial x-axis dimension name (default = 'sdimx') |
sdimy | spatial y-axis dimension name (default = 'sdimy') |
spatial_network_name | name of spatial network to use |
spatial_network_color | color of spatial network |
show_spatial_grid | show spatial grid |
grid_color | color of spatial grid |
spatial_grid_name | name of spatial grid to use |
spat_point_shape | spatial points with border or not (border or no_border) |
spat_point_size | spatial plot: point size |
spat_point_alpha | transparancy of spatial points |
spat_point_border_col | color of border around points |
spat_point_border_stroke | stroke size of border around points |
spat_edge_alpha | edge alpha |
cell_color_gradient | vector with 3 colors for numeric data |
gradient_midpoint | midpoint for color gradient |
gradient_limits | vector with lower and upper limits |
cow_n_col | cowplot param: how many columns |
cow_rel_h | cowplot param: relative height |
cow_rel_w | cowplot param: relative width |
cow_align | cowplot param: how to align |
show_legend | show legend |
legend_text | size of legend text |
dim_background_color | color of plot background for dimension plot |
spat_background_color | color of plot background for spatial plot |
vor_border_color | border colorr for voronoi plot |
vor_max_radius | maximum radius for voronoi 'cells' |
vor_alpha | transparancy of voronoi 'cells' |
axis_text | size of axis text |
axis_title | size of axis title |
show_plot | show plots |
return_plot | return ggplot object |
save_plot | directly save the plot [boolean] |
save_param | list of saving parameters, see |
default_save_name | default save name for saving, don't change, change save_name in save_param |
ggplot
Description of parameters.
Other spatial and dimension reduction gene expression visualizations:
spatDimGenePlot3D()
,
spatDimGenePlot()
data(mini_giotto_single_cell) all_genes = slot(mini_giotto_single_cell, 'gene_ID') selected_genes = all_genes[1] spatDimGenePlot2D(mini_giotto_single_cell, genes = selected_genes, dim_point_size = 3, spat_point_size = 3, cow_n_col = 1, plot_alignment = 'horizontal')