cluster cells using hierarchical clustering algorithm
doHclust(
gobject,
expression_values = c("normalized", "scaled", "custom"),
genes_to_use = NULL,
dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
dim_reduction_name = "pca",
dimensions_to_use = 1:10,
distance_method = c("pearson", "spearman", "original", "euclidean", "maximum",
"manhattan", "canberra", "binary", "minkowski"),
agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
"mcquitty", "median", "centroid"),
k = 10,
h = NULL,
name = "hclust",
return_gobject = TRUE,
set_seed = T,
seed_number = 1234
)
giotto object
expression values to use
subset of genes to use
dimension reduction to use
dimensions reduction name
dimensions to use
distance method
agglomeration method for hclust
number of final clusters
cut hierarchical tree at height = h
name for hierarchical clustering
boolean: return giotto object (default = TRUE)
set seed
number for seed
giotto object with new clusters appended to cell metadata
Description on how to use Kmeans clustering method.
data(mini_giotto_single_cell)
mini_giotto_single_cell = doHclust(mini_giotto_single_cell, k = 4, name = 'hier_clus')
plotUMAP_2D(mini_giotto_single_cell, cell_color = 'hier_clus', point_size = 3)