identify significant prinicipal components (PCs)
jackstrawPlot(
gobject,
expression_values = c("normalized", "scaled", "custom"),
reduction = c("cells", "genes"),
genes_to_use = NULL,
center = FALSE,
scale_unit = FALSE,
ncp = 20,
ylim = c(0, 1),
iter = 10,
threshold = 0.01,
verbose = TRUE,
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "jackstrawPlot"
)
giotto object
expression values to use
cells or genes
subset of genes to use for PCA
center data before PCA
scale features before PCA
number of principal components to calculate
y-axis limits on jackstraw plot
number of interations for jackstraw
p-value threshold to call a PC significant
show progress of jackstraw method
show plot
return ggplot object
directly save the plot [boolean]
list of saving parameters from all_plots_save_function()
default save name for saving, don't change, change save_name in save_param
ggplot object for jackstraw method
The Jackstraw method uses the permutationPA
function. By
systematically permuting genes it identifies robust, and thus significant, PCs.
# \donttest{
data(mini_giotto_single_cell)
# jackstraw package is required to run
jackstrawPlot(mini_giotto_single_cell, ncp = 10)
# }