runs a Principal Component Analysis
runPCA(
gobject,
expression_values = c("normalized", "scaled", "custom"),
reduction = c("cells", "genes"),
name = "pca",
genes_to_use = "hvg",
return_gobject = TRUE,
center = TRUE,
scale_unit = TRUE,
ncp = 100,
method = c("irlba", "factominer"),
rev = FALSE,
set_seed = TRUE,
seed_number = 1234,
verbose = TRUE,
...
)
giotto object
expression values to use
cells or genes
arbitrary name for PCA run
subset of genes to use for PCA
boolean: return giotto object (default = TRUE)
center data first (default = TRUE)
scale features before PCA (default = TRUE)
number of principal components to calculate
which implementation to use
do a reverse PCA
use of seed
seed number to use
verbosity of the function
additional parameters for PCA (see details)
giotto object with updated PCA dimension recuction
See prcomp_irlba
and PCA
for more information about other parameters.
genes_to_use = NULL: will use all genes from the selected matrix
genes_to_use = <hvg name>: can be used to select a column name of
highly variable genes, created by (see calculateHVG
)
genes_to_use = c('geneA', 'geneB', ...): will use all manually provided genes