run tSNE
runtSNE(
gobject,
expression_values = c("normalized", "scaled", "custom"),
reduction = c("cells", "genes"),
dim_reduction_to_use = "pca",
dim_reduction_name = "pca",
dimensions_to_use = 1:10,
name = "tsne",
genes_to_use = NULL,
return_gobject = TRUE,
dims = 2,
perplexity = 30,
theta = 0.5,
do_PCA_first = F,
set_seed = T,
seed_number = 1234,
verbose = TRUE,
...
)
giotto object
expression values to use
cells or genes
use another dimension reduction set as input
name of dimension reduction set to use
number of dimensions to use as input
arbitrary name for tSNE run
if dim_reduction_to_use = NULL, which genes to use
boolean: return giotto object (default = TRUE)
tSNE param: number of dimensions to return
tSNE param: perplexity
tSNE param: theta
tSNE param: do PCA before tSNE (default = FALSE)
use of seed
seed number to use
verbosity of the function
additional tSNE parameters
giotto object with updated tSNE dimension recuction
See Rtsne
for more information about these and other parameters.
Input for tSNE dimension reduction can be another dimension reduction (default = 'pca')
To use gene expression as input set dim_reduction_to_use = NULL
If dim_reduction_to_use = NULL, genes_to_use can be used to select a column name of
highly variable genes (see calculateHVG
) or simply provide a vector of genes
multiple tSNE results can be stored by changing the name of the analysis