Visualize gene expression according to dimension reduction coordinates
dimGenePlot(...)
Arguments passed on to dimGenePlot2D
gobject
giotto object
expression_values
gene expression values to use
genes
genes to show
dim_reduction_to_use
dimension reduction to use
dim_reduction_name
dimension reduction name
dim1_to_use
dimension to use on x-axis
dim2_to_use
dimension to use on y-axis
show_NN_network
show underlying NN network
nn_network_to_use
type of NN network to use (kNN vs sNN)
network_name
name of NN network to use, if show_NN_network = TRUE
network_color
color of NN network
edge_alpha
column to use for alpha of the edges
scale_alpha_with_expression
scale expression with ggplot alpha parameter
point_shape
point with border or not (border or no_border)
point_size
size of point (cell)
point_alpha
transparancy of points
cell_color_gradient
vector with 3 colors for numeric data
gradient_midpoint
midpoint for color gradient
gradient_limits
vector with lower and upper limits
point_border_col
color of border around points
point_border_stroke
stroke size of border around points
show_legend
show legend
legend_text
size of legend text
background_color
color of plot background
axis_text
size of axis text
axis_title
size of axis title
cow_n_col
cowplot param: how many columns
cow_rel_h
cowplot param: relative height
cow_rel_w
cowplot param: relative width
cow_align
cowplot param: how to align
show_plot
show plots
return_plot
return ggplot object
save_plot
directly save the plot [boolean]
save_param
list of saving parameters, see showSaveParameters
default_save_name
default save name for saving, don't change, change save_name in save_param
ggplot
Description of parameters.
Other dimension reduction gene expression visualizations:
dimGenePlot2D()
,
dimGenePlot3D()
data(mini_giotto_single_cell)
all_genes = slot(mini_giotto_single_cell, 'gene_ID')
selected_genes = all_genes[1:2]
dimGenePlot(mini_giotto_single_cell, genes = selected_genes, point_size = 3)