Visualize gene expression according to dimension reduction coordinates

dimGenePlot(...)

Arguments

...

Arguments passed on to dimGenePlot2D

gobject

giotto object

expression_values

gene expression values to use

genes

genes to show

dim_reduction_to_use

dimension reduction to use

dim_reduction_name

dimension reduction name

dim1_to_use

dimension to use on x-axis

dim2_to_use

dimension to use on y-axis

show_NN_network

show underlying NN network

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name

name of NN network to use, if show_NN_network = TRUE

network_color

color of NN network

edge_alpha

column to use for alpha of the edges

scale_alpha_with_expression

scale expression with ggplot alpha parameter

point_shape

point with border or not (border or no_border)

point_size

size of point (cell)

point_alpha

transparancy of points

cell_color_gradient

vector with 3 colors for numeric data

gradient_midpoint

midpoint for color gradient

gradient_limits

vector with lower and upper limits

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

show_legend

show legend

legend_text

size of legend text

background_color

color of plot background

axis_text

size of axis text

axis_title

size of axis title

cow_n_col

cowplot param: how many columns

cow_rel_h

cowplot param: relative height

cow_rel_w

cowplot param: relative width

cow_align

cowplot param: how to align

show_plot

show plots

return_plot

return ggplot object

save_plot

directly save the plot [boolean]

save_param

list of saving parameters, see showSaveParameters

default_save_name

default save name for saving, don't change, change save_name in save_param

Value

ggplot

Details

Description of parameters.

See also

dimGenePlot3D

Other dimension reduction gene expression visualizations: dimGenePlot2D(), dimGenePlot3D()

Examples


data(mini_giotto_single_cell)

all_genes = slot(mini_giotto_single_cell, 'gene_ID')
selected_genes = all_genes[1:2]
dimGenePlot(mini_giotto_single_cell, genes = selected_genes, point_size = 3)