Visualize gene expression according to dimension reduction coordinates
dimGenePlot2D(
gobject,
expression_values = c("normalized", "scaled", "custom"),
genes = NULL,
dim_reduction_to_use = "umap",
dim_reduction_name = "umap",
dim1_to_use = 1,
dim2_to_use = 2,
show_NN_network = F,
nn_network_to_use = "sNN",
network_name = "sNN.pca",
network_color = "lightgray",
edge_alpha = NULL,
scale_alpha_with_expression = FALSE,
point_shape = c("border", "no_border"),
point_size = 1,
point_alpha = 1,
cell_color_gradient = c("blue", "white", "red"),
gradient_midpoint = NULL,
gradient_limits = NULL,
point_border_col = "black",
point_border_stroke = 0.1,
show_legend = T,
legend_text = 8,
background_color = "white",
axis_text = 8,
axis_title = 8,
cow_n_col = 2,
cow_rel_h = 1,
cow_rel_w = 1,
cow_align = "h",
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "dimGenePlot2D"
)
giotto object
gene expression values to use
genes to show
dimension reduction to use
dimension reduction name
dimension to use on x-axis
dimension to use on y-axis
show underlying NN network
type of NN network to use (kNN vs sNN)
name of NN network to use, if show_NN_network = TRUE
color of NN network
column to use for alpha of the edges
scale expression with ggplot alpha parameter
point with border or not (border or no_border)
size of point (cell)
transparancy of points
vector with 3 colors for numeric data
midpoint for color gradient
vector with lower and upper limits
color of border around points
stroke size of border around points
show legend
size of legend text
color of plot background
size of axis text
size of axis title
cowplot param: how many columns
cowplot param: relative height
cowplot param: relative width
cowplot param: how to align
show plots
return ggplot object
directly save the plot [boolean]
list of saving parameters, see showSaveParameters
default save name for saving, don't change, change save_name in save_param
ggplot
Description of parameters.
Other dimension reduction gene expression visualizations:
dimGenePlot3D()
,
dimGenePlot()
data(mini_giotto_single_cell)
all_genes = slot(mini_giotto_single_cell, 'gene_ID')
selected_genes = all_genes[1:2]
dimGenePlot2D(mini_giotto_single_cell, genes = selected_genes, point_size = 3)